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Abstract- A "stick-slip" fracture model based on an "inertia-dependent" modified equation of
motion for the crack tip and a "non-monotonic" fracture toughness-velocity curve is presented and
analyzed with the aid of techniques commonly used in non-linear dynamics. As a result of an
analysis for constant applied extension rate fracture tests. macroscopic stick-slip fracture oscillations
(with crack jump increments larger than the length of the "fracture process zone") are shown to be
self-oscillations and described by a limit cycle in the energy release rate--<:rack tip velocity plane.
Numerical results are presented and compared with experimental stick-slip fracture observations.

l. INTRODUCTION

The phenomenon of "stick-slip" (or "arrest-fast propagation") fracture is commonly
observed in standard fracture tests of polymers and peel tests of polymeric adhesives. Stick­
slip fracture or peeling can occur on both microscopic and macroscopic scales and is
characterized by an oscillatory crack tip velocity and crack growth jumps. Stick-slip fracture
on a microscopic scale is the case where the size of the crack jump increments is comparable
with the size of the fracture process zone and the crack tip velocity oscillations and their
effects are usually "averaged" out in experiments. Examples of such behavior are observed
in dynamic fracture tests where crack tip velocity oscillations result in a periodic structure
on the fracture surface (Fineberg ef al., 1991, 1992). Stick-slip fracture on a macroscopic
scale is the case where the size of the crack jump increments is much larger than the size of
the fracture process zone and cannot be easily "averaged" out in experiments. For example,
under constant applied extension rate loading conditions, macroscopic stick-slip fracture
is characterized by a sawtooth load versus time profile where the drop in load corresponds
to initiation and fast propagation of macroscopic crack growth. Examples of such behavior
in fracture tests under constant applied extension rates are observed in crack growth of
polymethylmethacry1ate (PMMA) (Atkins ef al., 1975; Hakeem and Phillips, 1979; Ravi­
Chandar and Balzano, 1988), thermosetting polyesters (Leevers, 1986) and epoxy resins
(Selby and Miller, 1975; Kobayashi and Dally, 1977; Yamini and Young, 1977; Phillips
ef al., 1978; Kinloch and Williams, 1980; Scott et aI., 1980), tearing of rubber (Greensmith
and Thomas, 1955; Isherwood and Williams, 1978), as well as in peeling of polymeric
adhesives (Gardon, 1963; Aubrey et al., 1969; Aubrey, 1978; Maugis and Barquins, 1987;
Kim and Kim, 1988; Kinloch and Yuen, 1989). In addition, periodic transverse crack arrest
marks and/or oscillatory crack tip velocities were observed in constant extension rate
fracture tests of PMMA (Hakeem and Phillips, 1979; Carlsson et aI., 1972; Takahashi,
1987) and epoxy resins (Young and Beaumont, 1976; Yamini and Young, 1979; Scott et
al., 1980; Takahashi, 1987), as well as in peeling of polymeric adhesives (Maugis and
Barquins, 1987; Kim and Kim, 1988).

Typically, stick-slip fracture on a microscopic scale may be interpreted on the basis of
a discrete fracture process zone model. The fracture process zone is defined as a small
region ahead of the crack tip where material degradation and local fracture processes occur.
It is assumed that after some waiting time the material in the fracture process zone ruptures,
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the crack advances the length of the process zone rapidly and arrests. The process repeats
itself after some waiting time giving rise to discontinuous crack growth on a microscopic
scale. Stick-slip fracture on a macroscopic scale cannot be interpreted using the fracture
process zone model since the size of the crack jump increment is significantly larger than
the process zone length. In this case, stick-slip fracture has been associated with the negative
slope region(s) of a macroscopic non-monotonic (non-convex) "fracture toughness" versus
"velocity" curve. For example, stick-slip fracture occurs when the applied extension rate
and load are such that they tend to impose a crack tip velocity within the negative slope
region of the non-monotonic fracture toughness versus velocity curve. Roughly speaking,
steady continuous crack propagation cannot be observed in this unstable region where the
resistance to crack growth decreases for an incremental increase of the crack tip velocity.
Instead, the crack tip velocity oscillates by following a limit cycle in the crack tip energy
release rate-velocity plane determined by the elastic behavior of the fracture specimen (and
testing machine) and the crack tip velocity dependence of the fracture toughness.

Several investigators have intuitively proposed that macroscopic stick-slip fracture
oscillations are manifested as closed curves or cycles in the energy release rate (or stress
intensity factor)-velocity plane (Ripling et al., 1964; Irwin, 1964; Irwin and Paris, 1971 ;
Williams et al., 1968; Williams, 1984; Kramer and Hart, 1984; Maugis, 1985). In particular,
Barenblatt and Salganik (1963) went even further and proposed a specific model interpreting
macroscopic stick-slip fracture as a self-oscillatory process. More recently, Maugis and
Barquins (1987) and Webb and Aifantis (1989) viewed stick-slip peeling periodicities as
self-oscillations. In the present paper this point ofview is generalized and applied to interpret
stick-slip fracture and the corresponding oscillations observed in polymeric materials.

Non-monotonic fracture toughness versus velocity curves and related theoretical mod­
els are reviewed in Section 2. In Section 3 a mathematical model is presented for macroscopic
stick-slip fracture by incorporating an "inertia" term into the usual equation of motion for
the crack tip. Finally, in Section 4 numerical results are presented for macroscopic stick­
slip fracture and compared with some experimental measurements on epoxy resins that
were available in the literature.

2. NON·MONOTONIC FRACTURE TOUGHNESS-VELOCITY CURVES

Although stick-slip fracture is a widely observed phenomenon, non-monotonic frac­
ture toughness-velocity curves over a wide range of crack tip velocities have been measured
only for a few materials, such as PMMA (Johnson and Radon, 1972; Green and Pratt,
1974; Atkins et al., 1975; Broutman and Kobayashi, 1972), thermosetting polyesters
(Leevers, 1986), rubber (Greensmith and Thomas, 1955), as well as during peeling of
adherands bonded to substrates with polymeric adhesives (Aubrey et al., 1969; Aubrey,
1978; Maugis and Barquins, 1987; Aubrey and Sherriff, 1980; Kinloch and Yuen, 1989).
In these cases, a typically "measured" non-monotonic fracture toughness-velocity curve
with two stable branches (low and high velocity) separated by an unstable stick-slip region
is shown schematically in Fig. 1(a). In other situations three stable branches are observed
with two unstable stick-slip fracture regions (Aubrey, 1978; Broutman and Kobayashi,
1972; Kinloch and Yuen, 1989). In the case of epoxy resin polymers (Yamini and Young,
1977,1979; Phillips et al., 1978; Scott et al., 1980) there is no stable low velocity branch
and the non-monotonic fracture toughness-velocity curve is as shown schematically in Fig.
I(b). This type of curve is typical for materials where the energy release rate required for
crack initiation is higher than that required for crack propagation. It is important to point
out that the unstable "negative slope" region is not actually measured. Instead, it is generally
defined by the crack tip energy release rate corresponding to the maximum or average load
of the characteristic sawtooth load profile for an average crack tip velocity rather than the
actual velocity. In this connection, it is emphasized that even,though it was assumed that
the fracture toughness is a material property, its value cannot be measured directly. Instead,
it is inferred from measurements pertaining to the critical values of the energy release rate
or stress intensity factor necessary for crack propagation.
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Fig. 1. Schematics of typical non-monotonic fracture toughness-velocity curves.
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Several possible mechanisms have been proposed to explain qualitatively the existence
of an unstable negative slope region in the fracture toughness-velocity curve in these
materials. Greensmith and Thomas (1955) observed in rubber the formation of a strength­
ening (toughening) structure at the crack tip due to crystallization. It was reasoned that
the size of the structure and the toughening effect would decrease with increasing crack tip
velocity giving rise to the negative slope region. Williams (1972) proposed that the transition
in the fracture toughness-velocity curve of PMMA from a positive slope to a negative slope
was due to a transition from isothermal to adiabatic conditions at the crack tip. The
reduction in the fracture toughness with increasing velocity was associated with the local
thermal softening near the crack tip attributed to the heat generated by the viscous fracture
processes, which was assumed to increase with increasing velocity. Johnson and Radon
(1972) identified fracture mode transitions in PMMA with molecular relaxations and
changes in the internal friction (viscosity) of the material, possibly in connection with the
onset of adiabatic conditions at the crack tip over a range of velocities. Maugis (1985)
associated viscoelastic losses near a moving crack tip with the fracture toughness in poly­
mers. It was suggested that during the loading and unloading cycle, which occurs as the
crack tip approaches and passes a material point, viscoelastic losses occur as a result of
hysteresis. The frequency of this cycle was assumed to be proportional to the crack tip
velocity and the "viscoelastic" losses were assumed to be proportional to the imaginary
part of the complex Young's modulus (loss modulus). Therefore, it was proposed that a
negative slope region in the fracture toughness-velocity curve may effectively represent the
observed decreases of the loss modulus in polymers with increasing cyclic frequency.

It is interesting to note that several crack tip analyses already exist for steady state
crack propagation which "predict" negative slope branches in their "fracture toughness"
versus "velocity" curves. These negative slope branches obviously represent unstable crack
growth and contain states that cannot be attained by the material for steady crack velocities.
It follows that these models breakdown in these regimes where stable "steady" crack
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propagation is not possible but, instead, unstable stick-slip fracture occurs. Hart (1980,
1983) and Kramer and Hart (1984) developed a model for quasi-static, steady state crack
growth in ductile materials. The model is based on the assumption that the crack tip stress
state is characterized by an inverse square root singularity and a local stress intensity factor
and makes use of the self-stresses of the plastic (or craze) zone represented by a continuous
distribution of dislocations. The self-stresses consist of singular and non-singular terms
with the singular terms being characterized by a plastic stress intensity (which is added to
the usual elastic stress intensity factor to obtain the total local stress intensity factor). The
plastic stress intensity factor acts to screen or shield the crack tip and is assumed to be a
function of the crack tip velocity and local stress intensity factor since the plasticity (or
inelasticity) in the plastic (or craze) zone is strain rate sensitive and dependent on the level
of stress at the crack tip. By assuming various brittle crack growth laws in terms of the
local crack tip stress intensity factor, non-monotonic fracture toughness-velocity curves
like those in Fig. I(a) (Hart. 1980) and in Fig l(b) (Kramer and Hart, 1984) were deter­
mined. Thus, the model suggests that at high velocities a breakaway phenomenon may
occur in which the crack outruns the ability of the plastic (or craze) zone to shield the crack
tip.

Similar results were obtained in the analysis of quasi-static, steady state crack growth
under small scale yielding conditions in an elastic-viscous material (H ui and Riedel, 1981 ;
Hui, 1983; Riedel. 1990). The asymptotic stress and strain fields for a quasi-statically
growing crack in an elastic-viscous material were derived by Hui and Reidel (1981). In a
power-law creep material it was shown that for a creep coefficient 11 < 3 the asymptotic
stress and strain fields are given by the usual inverse square-root singularity, which was
also assumed by Hart (1980) in his analysis. For n > 3 a different singularity (known as
the H R singularity) less than the inverse square-root singularity was determined [i.e.
(; ~ (1';1') 1111 I), where v is the crack tip velocity and r denotes the radial distance from the
crack tip]. It was assumed that the remote boundary condition (r ---+'CD) for steady state
crack growth under small-scale yielding conditions is given by the elastic stress field and
the near crack tip fields are given by the HR fields (i.e. n> 3). The crack was assumed to
advance when the effective strain at a critical distance from the crack tip obtains a critical
value. The resulting non-monotonic fracture toughness-velocity curve is like that in Fig.
I(b). The unstable branch corresponds to the case where the strain is primarily determined
by the HR field. The HR field is mostly dominant (and the size of the creep zone is
maximum) at the point of minimum fracture toughness and decreases on the stable branch
for increasing stress intensity factor until the elastic strain dominates the creep strain.

Non-monotonic fracture toughness-velocity curves are also determined in dynamic
fracture analyses for elastic-viscoplastic materials (Freund and Hutchinson, 1985; Freund
cf al., 1986: Mataga cf al" 1987). Steady state crack growth and small-scale yielding
conditions are assumed and in the analyses it is envisioned that the plastic zone travels with
the moving crack tip leaving behind a plastic wake. It is assumed that the material very
near the crack tip and deep within the plastic zone is elastic-like since it experiences very
high strain rates as the crack propagates. Thus, the stress state at the crack tip is assumed
to be elastic and identical to the remote elastic stress state except that it is characterized by
a local stress intensity factor (or local energy release rate), which differs from the remote
or applied stress intensity factor (or applied energy release rate) through a shielding term
associated with the energy dissipated in the plastic wake. The stress state in the plastic zone
is assumed and the plastic strain rate in the plastic zone is determined from the assumed
plastic flow rule. The plastic dissipation or shielding term is determined from the crack tip
analyses and the hypothesis that crack growth occurs when the local energy release rate
reaches a critical value (assumed to be a material constant). It then turns out that the
applied energy release rate required to move a crack at velocity v (i.e. fracture toughness­
velocity curve) is as shown in Fig. I (b). At low velocities there is sufficient time for plastic
deformation to occur and a large applied energy release rate is required to move the crack.
This effect decreases with increasing velocity until the material inertia plays a role. The
inertial resistance of the material causes the energy release rate required to propagate the
crack to increase with increasing velocity.
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Popelar (1990) expanded the usual cleavage fracture models to include a ductile
fracture mode. It was demonstrated in his analysis that at low crack tip velocities the elastic
region near the crack tip becomes very small compared with the size of the plastic zone. In
this case, ductile fracture occurs and crack growth is assumed to occur when the effective
plastic strain reaches a critical value at a critical distance ahead of the crack tip. The result
is that the fracture toughness-velocity curve has a stable positive slope branch at low
velocities and since the cleavage fracture is assumed to occur at higher velocities then the
fracture toughness-velocity curve would be as shown in Fig. 1(a)

Freund and Lee (1990) also examined fracture mode transitions in dynamic crack
growth. The plastic zone was approximated as a one-dimensional cohesive zone ahead of
the crack tip and the cohesive stresses were assumed to depend on the local opening rate.
In their analysis crack growth was permitted to occur in either a cleavage (critical stress)
or ductile (critical crack tip opening displacement) mode depending on which of the two
competing modes prevails, and fracture toughness-velocity curves as in Fig. 1(a) were also
predicted.

The qualitative behavior of the non-monotonic fracture toughness-velocity curves is
successfully captured using the crack tip analyses and models outlined above. While this
fact in itself demonstrates the appropriateness and physical reasonableness of these models,
there are certain serious difficulties which arise, especially when the implications of the
negative slope regime are not considered properly. For example, in the dynamic analyses
(Freund and Hutchinson, 1985; Freund ef al., 1986; Mataga ef al., 1987) the minimum in
the fracture toughness velocity curve occurs at approximately half the Rayleigh wave speed
CR and the fracture toughness approaches infinity at CR' Experimentally, dynamic crack
growth rates seldom exceed 0.3CR -OACR' This difficulty may be attributed to the occurrence
of crack tip velocity oscillations observed in dynamic crack growth experiments (Fineberg
ef al., 1991, 1992). In this case the fracture process zone size is not constant and possibly
the crack propagation process can no longer be reasonably approximated as steady state
in these analyses. (Note, in this connection, that the aforementioned negative slope region
cannot be physically envisioned as corresponding to steady state crack propagation.)
Moreover, these crack tip analyses and models do not consider the experimentally observed
loading rate dependence of the fracture toughness at initiation. Specifically, it is observed
in epoxy resins (Yamini and Young, 1977, 1979; Phillips ef al., 1978; Scott ef al., 1980)
that the crack initiation toughness decreases with increasing applied extension or loading
rates, a fact suggesting that the crack growth history can no longer be simply described by
a velocity-dependent fracture toughness.

Some of the above difficulties are overcome in the model outlined in the next section
where the assumptions of a loading curve, non-convexity of the fracture toughness-velocity
curve and crack tip inertia are adopted. Within the resulting framework, one can then
interpret the oscillations observed during stick--slip fracture and account for the cor­
responding effects of pre-macroscopic crack initiation processes, such as, crack tip blunting
and microcrack/void development, which manifest themselves in the appearance of the
upper (initiation) and lower (arrest) stress intensity factors.

:1 STICK SLIP FRACTURE MODEL

In this section the basic equations for stick-slip fracture are derived. The usual equation
of motion for the crack tip is modified by introducing an additional term which includes
the crack tip acceleration in order to capture the non-steady crack growth behavior that
occurs during stick-slip fracture. This additional term is referred to as the crack tip inertia
and its coefficient is referred to as the "effective" mass of the crack. The governing equations
for macroscopic stick-slip fracture are derived from an analysis of the constant extension
rate fracture test. For different crack geometries and specimen configurations, these equa­
tions may be approximately cast into a common mathematical form and then examined
using techniques from non-linear dynamics. A preliminary discussion of this approach was
included in reviews by Aifantis (1990, 1991, 1992) and its mathematical analysis parallels
the one presented by Webb and Aifantis (1989) for peeling.
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Roughly speaking, stick-slip fracture involves both a slow, subcritical or apparent
crack growth stage ("stick') and a fast or dynamic crack growth stage ("slip"). Thus, in
general, during stick-slip fracture the concepts of dynamic fracture mechanics may be used.
A simple result from rather involved analyses (Freund, 1990) is that the dynamic energy
release rate Go can be expressed as the product of a universal function g(v) = I-vieR
(referred to as the material inertial shielding term) and the "static" equilibrium energy
release rate G, that is,

(I)

It follows that the dynamic energy release rate Go depends only on the crack length a
through G and the instantaneous crack tip velocity v through the function g(v); but is
independent of the history of crack tip motion (e.g. crack tip acceleration). This is because
higher order terms in the crack tip stress and strain fields, which depend on the crack tip
acceleration, drop out in the "asymptotic" determination of the near tip energy release rate
Go (Freund, 1990; Freund and Rosakis, 1992).

The equation of motion for a propagating crack may be written in the general form
(Freund, 1990)

Go(a, v; loading history, geometry, moduli, ... ) = y, (2)

where ;, is the fracture toughness or specific fracture energy. The fracture toughness rep­
resents the resistance of the material to crack growth. It is usually assumed to depend on
the crack tip velocity v. However, inherent in this assumption is the hypothesis of steady
state or "asymptomatically" steady state crack growth. There is no provision in eqn (2) to
consider what happens if the energy release rate is suddenly changed to be larger (or
smaller) than the steady state values of the fracture toughness. Realistically, the crack must
accelerate (or decelerate) over a very short, but finite time interval. However, eqn (2) would
unrealistically predict that with a sudden change in the energy release rate the steady state
velocity would have to change instantaneously to a new steady state value. This suggests
that the equation of motion must be modified to include the crack tip acceleration in order
to capture non-steady or transient crack growth. Several investigators (Barenblatt and
Salganik, 1963; Diaz and Lund, 1989; Liu and Marder, 1991; Marder 1991; Neimitz,
1991) have proposed specific methods to include a crack tip acceleration term into the
equation of motion for the crack tip. These methods, however, are not readily applicable
to general fracture configurations and loading conditions. Moreover, in some analyses
(Diaz and Lund, 1989; Liu and Marder, 1991 ; Marder 1991), the usual near tip asymptotic
fields in dynamic fracture mechanics are not preserved. In view of these difficulties and the
fact that an exact derivation of an equation of motion for the crack tip may not be feasible
within presently adopted approaches, the following inertia-dependent intuitive modification
of eqn (2) for non-steady crack growth is proposed

(3)

where Go preserves its definition (Freund, 1990) and the coefficient m is the "effective" or
"attached" mass of the crack tip. [This is reminiscent of the effective mass assigned to the
dislocation core (Aifantis, 1987)]. In general, the phenomenological coefficient may be a
function of the crack tip velocity, specimen configuration, loading, material properties and
environment, but in a first approximation it will be taken as constant. It is important to
recognize that the crack tip inertia term will depend on the appropriate time and length
scales of the fracture processes and, in general, its role should be assessed from transient
or non-steady crack growth experiments.

In addition to the equation of motion for the crack tip, another differential equation
is necessary to describe fully macroscopic stick-slip fracture under constant applied exten­
sion rate conditions. This equation can be derived by considering the compliant loading of
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a cracked body. The load P is applied to the cracked body through a loading machine or
device with a compliance Cm such that the total displacement A is given by the expression

where b is the load-point displacement which can be written in the form

b = C(a)P,

(4)

(5)

and C(a) is the crack length-dependent compliance of the body. In general, the load-point
displacement is assumed to be expressed by the sum b = be +bne where be is the displacement
at the load-point due to the crack and bnc is the load-point displacement of the uncracked
body. From eqn (5) it follows that C = Cc+ Cne, where the compliance for the cracked
body is defined as Cc = be/ P and the compliance of the uncracked body must be determined
from experiments or from an appropriate elasticity solution.

The static energy release rate G is expressed in terms of the stress intensity factor K,
by the familiar formula

(6)

where E = E for plain stress and E = E/(I- v2
) for plane strain, C = aC;oa, b is the

specimen thickness, while E and v are the Young's modulus and Poisson's ratio, respectively.
Differentiation of eqn (6) yields:

(7)

where C" = a2C(a)/oa2
• Upon introducing eqn (5) into eqn (4) and differentiating, we have

I
dP = -- fdA - PC' da)

Cm+C
(8)

which, in view of eqn (7), gives the following differential equation (after dividing by the
time differential dt) for the energy release rate

(9)

The stress intensity factor for common fracture test specimen geometries (e.g. double
torsion, compact tension, wedge opening loaded, double cantilever beam and tapered
double cantilever beam specimens) are compiled in handbooks (Murakami, 1986) and can
be written in the general form

P
K = bJW f(a/W), (10)

where W is a geometric parameter and l(a/w) is a known function. Introducing eqn (10)
into eqn (6), the energy release rate can be expressed as

(II)

and it follows from the comparison of eqns (II) and (6) that



2732 T. W. Webb and E. C. Aifantis

2j'2(aIW)
C'=' .

hWE . (12)

Therefore, the relevant terms in eqn (9) can be rewritten in the form

2Pf"(a I W)PC'= . ,
bWE '

P"C = 4P"f(ajW)f'(a/W)

bW2 E '
(13)

where f'(a/W) = af(a/W)ja(ajW). [The compliance C can thus be determined by inte­
grating eqn (12)].

Alternatively, the energy release rate G can be expressed as a function of the total
displacement ~ and the crack length a, such that,

. (8G). (8G)G = -~ .~+ - v.
a~ ,I va ~

Comparison of eqns (9) and (14) yields

(~~}I = Cm~C ~PC,

(~~)~ - C
m
~ C ~ (PC)" + 2

1
b p

2
C.

(14)

(15a)

(15b)

The terms PC and p 2C" in eqns (15a,b) are always positive and it follows from eqn
(14) that a necessary condition for stick-slip fracture to occur for a specimen configuration
under constant extension rates is the same condition as for stable crack growth to occur
under a fixed displacement loading condition for a material with a fracture toughness
independent of the crack growth increment ~a [i.e. ayja(~a) = 0] ; (Kanninen and Popelar,
1985), i.e.

or equivalently

(rG)
~ <0
ca ,\

(16)

(17)

If this condition is not satisfied then according to eqn (14) G> 0 and the energy release
rate G will increase continuously as the crack length increases, which means the crack tip
velocity cannot be controlled after a fracture instability occurs (i.e. the crack tip continues
to accelerate and a "fast" rather than a "stick-slip" fracture occurs). In addition, it follows
from eqn (17) that a stiff loading machine (low Cm) may be necessary for certain specimen
configurations in order to satisfy this condition. This demonstrates the frequently imposed
necessity of using a stiff loading system when examining stick-slip fracture experimentally
(Maugis, 1985).

For use in the numerical calculations of the next section, the expressions for the
compliance. energy release rate and its differential equation are shown explicitly for the
double torsion (OT) specimen which is commonly used in fracture tests of polymers. The
compliance for the OT specimen under plane strain is linear in the crack length and can be
written as (M urakami, 1986)
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Fig. 2. Double torsion specimen and dimensions (Murakami, 1986).

6(1 +v)W~a
C(a)=,

Eb 3 WZ

2733

(18)

where Wm and Ware geometric parameters shown in Fig. 2 and Z is the thickness correction
factor. Introducing eqn (18) in eqn (6) and making use of eqns (4) and (5), the energy
release rate can be written in terms of the load or total displacement in the form

3(1+V)W~,PC Eb 3 WZ flc
G = -------- = .-----

Eb 3 bc WZ 12bc(1+v)W~,aC (1+ CmEb3WZ)2'

6(I+v)W~a

(19)

where be denotes the thickness at the crack tip for a side-grooved specimen. Taking the
time derivative of eqn (19), the differential equation for the energy release rate may be
written in the form

where

G=K(V-V), (20)

2G
K=

(
C Eb

3
WZ)'a I + ----'m----' _

6(1 + v) W~a

(21)

The DT specimen is referred to as a constant K (or G) specimen because when the load is
constant under stable crack growth conditions then G (or K) is constant according to eqn
(19). Another feature of this specimen is that because the compliance is linear to the crack
length then stable crack growth is self-similar (i.e. changes in fl result in proportional
changes in crack length). Also, it is interesting to note that the crack tip velocity can always
be controlled for a constant K specimen, since eqn (17) is satisfied regardless of the loading
machine compliance since C' = o.

Equation (20) provides a relationship between the constant applied extension rate A
and the local crack tip velocity Z·. However, in some fracture test configurations (e.g. peeling,
tearing, wedging, scraping, etc.) the relationship between the load-point displacement and
load cannot be described by eqn (4) and, thus, an alternative analysis is necessary for
deriving a suitable relationship between load-point velocity (global) and crack tip velocity

SAS 32 11-18-R
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(local) (Barenblatt and Salganik. 1963; Maugis and Barquins. 1987; Webb and Aifantis,
1989; Tsai and Kim, 1993).

The qualitative behavior of the crack tip oscillations can be investigated within the
framework of non-linear dynamics. Thus, for a relatively small amount of crack growth
(a;:;;:; constant) and for cases where the energy release rate oscillates about an average value,
it is not unreasonable to approximate K and Vas constants. Then eqns (20) and (3) form
an autonomous system of two first order differential equations,

G = K(V-v),

Iv = - (G-y(v)),
m

(22a)

(22b)

where g(v) in eqn (l) was approximated by unity for simplicity. The qualitative behavior
of the system of eqn (22a,b) is governed by the first order differential equation

dG (V-v)
-- = InK
dv (G-y(v))'

(23)

obtained by dividing eqn (22a) with eqn (22b). In the phase plane (G, v) the solution is a
family of integral curves G = G(v; ;.) where A is a constant and the slope of the tangents at
every point of the integral curves is given by eqn (23). Furthermore, at each point of the
phase plane (except at the singular points) there passes a unique integral curve (Andronov
et af., 1987). For eqn (23) there is only one singular point, i.e

v = V,

G = y(V),

(24a)

(24b)

which corresponds to steady state cracking since eqns (24a, b) define the equilibrium state
of eqns (22a, b). It follows from linearizing eqns (22a, b) that the equilibrium state is
stable when oy(V)/ov > 0 and unstable when oy(V)/ov < O. Furthermore, when
lei(V)/evl > 2.j(Km) the singular point is a node and the integral curves approach (for
stable case) or leave (for unstable case) the singular point in an periodic fashion. However,
when I ey( v)/ovl < 2.) (Km) the singular point is a focus and the integral curves spiral
towards (for stable case) or spiral away from (for unstable case) the singular point.

It can be shown that the integral curves leaving the unstable singular points when one
attempts to impose a crack tip velocity V within the instable negative slope region approach
a stable limit cycle (Minorsky, 1962). The limit cycle corresponds to undamped (periodic)
oscillations which are commonly referred to as self-oscillations. An interesting feature is
that the amplitude of these non-linear oscillations is independent of the initial conditions
and depends only on the form of the system of governing equations. In other words, the
non-linear oscillations depend on the non-monotonic fracture toughness-velocity and the
elastic behavior of th~ fracture specimen and testing machine. The direction of the integral
curves and limit cycle is given by eqns (22a, b) and it follows that they are in the clockwise
direction. In the limiting case where the "effective" mass of the crack tip approaches zero,
eqn (23) reduces to

dG(G-i(V)) = O. (25)

This implies that the limit cycle is dG = 0 (G = const.) and G = y(v). The self-oscillations
in this case are referred to as relaxational oscillations and this is the limit cycle usually
assumed in macroscopic stick-slip fracture (Kramer and Hart, 1984; Maugis, 1985; Tsai
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(a) v, V v. log v

(b) v, V v. log v

Fig. 3. Schematics of "c1assical" limit cycles for macroscopic stick-slip fracture.

and Kim, 1993). In Figs 3(a, b) it can be seen that the crack accelerates rapidly at v = Vi

and G = G; and "jumps" to the stable high velocity branch. The crack decelerates as the
energy release rate decreases and "arrests" at G = Ga. The crack accelerates and propagates
slowly on the stable low velocity branch as the energy release rate increases. Fast macro­
scopic crack initiation occurs when G = G; and v = VI and the process repeats itself.
However, in the next section it will be shown that this "classical" relaxationallimit cycle is
sometimes insufficient to describe some experimental fracture observations for epoxy resins.

The relaxational limit cycles are shown schematically in Figs 3(a, b) for the two
different types of non-monotonic fracture toughness-velocity curves discussed in Section
2. In Fig. 3(b) a positive slope branch called the loading curve is introduced since there is
no experimentally measured stable, subcritical branch in this case. For convenience, the
loading curve is treated as if it were part of the fracture toughness-velocity curve rev),
however, it is pointed out that the loading curve in Fig. 3(b) is not an intrinsic material
property like the slow, stable branch in Fig. 3(a). In particular, the loading curve represents
the non-steady, subcritical and/or "apparent" crack growth due to pre-macroscopic fracture
processes, such as localized plasticity (i.e. crack tip blunting), microcracking and crazing
which may occur in front of the crack tip during loading of the specimen. Since these
fracture processes are, in general, time-dependent it is reasonable to assume that the loading
curve would depend on the applied extension rate, specimen geometry and the loading
machine compliance that influence the local crack tip opening or loading rate. The loading
curve can be assumed as a steady material property if the crack tip acceleration and loading
rate are low enough to enable the fracture processes ahead of the crack tip to achieve steady
state during loading. In this case the loading curve and the stable, subcritical branch will
coincide as shown in Fig. 3(a). In principle, the loading curve may be determined theor­
etically from an appropriate crack tip analysis or empirically from appropriate experimental
measurements. Here, however, the loading curve is assumed to be of a power-law form

(26)
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where Yo, YI and n are phenomenological coefficients, which depend on the specimen
configuration, loading machine compliance, applied extension rate and material properties.
This form is motivated by corresponding expressions for subcritical crack growth (Maugis,
1985) and viscoelastic cohesive zone analyses (Kanninen and Popelar, 1985). Other forms
for the loading curve are also possible.

In the nearly linear case when loy(v)/ovl < 2.j(Km), a perturbation analysis can be
applied to eqns (22a, b). In particular, the method of multiple scales (Nayfeh, 1981) is used
to determine a uniform first-order expansion of eqns (22a, b) about v = V for an initial
condition of v = V j • This first-order expansion is given by

J'(-80Y(V,)/OV)[ ( . 80y(V)/.ov ) (CY(V)i
OV

l/]-li
2 (JK)V ~ V+ 1- 1+ e m cos - t .

0:(V)/ov 3 0:(V)/ov3 (v,- V)2 m

(27)

It can be seen from eqn (27) that if Vj = V or O"I'( v)/ov = 0 the amplitude of the limit cycle
is zero, that is, no stick-slip fracture occurs and as t -> 00 eqn (27) becomes

J( -80Y(V)/OV) (JK)v ~ V+ cos -t,
0:(V)/ov 3 m

which shows that the velocity is independent of the initial conditions for Vj =f- V.

4. NUMERICAL RESULTS

(28)

In this section numerical "experiments" are performed to examine further the behavior
of the equations of stick-slip fracture. These equations are for a DT specimen under
constant applied extension rates; however, it is not unreasonable to expect that the basic
characteristics of these equations roughly apply to other fracture specimen geometries.
Finally, numerical calculations are compared with stick-slip fracture measurements and
observations in epoxy resins.

4.1. Numerical experiments
The governing equations of stick-slip fracture for a DT specimen can be rewritten in

the non-dimensional form as follows

dd _
-= [36
dt

dO 1 _
dt = ;h(G - y(6))

(29)

(30)

(31)

where it was assumed that g(v) is unity and" A" indicates normalization with respect to a
characteristic value. The non-dimensional variables are defined as

v
0=-

v '
*

~ ,i
L1 =-

v '
*

(32)

where a* is the characteristic crack length taken as the initial crack length and v* is the
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Fig. 5. Crack tip velocity profile with respect to time showing the effect of crack tip inertia.

characteristic crack tip velocity at which the fracture toughness has a local minimum y*
[i.e. y* = y(v*)]. The coefficients in eqns (29)~(31) are defined as

mv
m=--*

}'*
(33)

Using eqns (19) and (32) the load P for the DT specimen can be written in the form

p = J(Eb 3bc WZY*),
* 3(l+v)W~

(34)

where J6 can be viewed as a normalized load.
For the following numerical "experiments" the values (unless otherwise indicated)

were chosen for numerical convenience to be 1J = 6.25 S-I, m = 10-5 s, em = 0, IX = 65.7
and P* = 36.9 N. The equation for the loading curve in non-dimensional form reads

(35)

The loading curve shown in Fig. 4 is assumed to be fixed and the values of the coefficients
are chosen for numerical convenience to be Yo = 0.1, y, = 15.9 and n = 0.15. This results in
the loading curve intersecting the negative slope region of the assumed non-monotonic
fracture toughness curve y(v) shown in Fig. 4 at v = v, = 0.093 and YeVi) = Gi = 1.21. The
applied extension rate is chosen as A= 0.0025 (unless otherwise indicated) such that the
steady state crack tip velocity V == TJ.AIJ6; = 0.149 is imposed with the unstable, negative
slope region of y(v), i.e. v, < V < 1. The equations 4lre integrated numerically using an
Adams-Moulton routine and the behaviors of eqns (29)-(31) are plotted in Figs 4---9.
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The limit cycles in the phase plane (G, 6) are plotted in Fig. 4 for two different values
of the effective mass of the crack tip m. For small values for fn the limit cycle appears to be
the relaxational type except that now there is a small but finite time interval between crack
jumps. For larger values of m the "limit cycle" appears quite different from the classical
limit cycle. For example, the crack tip velocity accelerates from i3 = VI to a lower velocity
on the high velocity branch and decelerates from (j = I to a lower velocity on the loading
curve than in the case of a small effective mass. This is illustrated in Fig. 5 where the
normalized velocity i! is plotted with respect to time for two different values of m. In
addition, this figure shows that for larger values of m the frequency of the oscillations is
lower. More importantly, the energy release rate Gfor the non-cIassicallimit cycle shown
in Fig. 4 decreases below the local minimum fracture toughness. This result will be used
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later to describe some common fracture "initiation" and "arrest" experiments on epoxy
resins.

The loading machine compliance has a significant influence on the stick-slip fracture
behavior. For example, the frequency of the oscillations decreases with increasing Cm as
shown in Fig. 7 where the normalized load ./G is plotted with respect to time for two
different values of Cm' In fact, as Cmapproaches infinity the frequency of the oscillations
approaches zero and stick-slip fracture will not occur. In Fig. 8 the step-like crack growth
(Ad = d - I) is plotted with respect to time for two different values of Cm' This figure shows
how the magnitude of the "slow" crack growth increment often referred to as crack "arrest"
and the magnitude of the "fast" crack growth increment increase with increasing Cm' This
is a direct consequence of the fact that more time is spent on the loading curve and high
velocity branch, thus resulting in lower frequency oscillations. However, as shown in Fig.
7, the overall crack growth is higher in the case of a stiffer loading machine.

During the loading stage there are two competing mechanisms for which the "blunting"
crack mayor may not propagate rapidly as a sharp crack. Local inelastic deformation
results in "small-scale" crack tip blunting, which relaxes the crack tip stress field and acts
to retard the nucleation of a sharp crack from a blunted crack. At the same time damage
(e.g. micro-cracks, voids, etc) accumulates in the fracture process zone ahead of the crack
tip coalescing to nucleate a sharp crack from a blunted cr!ck tip. The difference between

the desired (but unobtainable) steady state velocity V == f/.11/JG and the initiation velocity
Vj for the sharp crack is a measure of the propensity for nucleation of a sharp crack from a
blunted crack tip. In Fig. 8 the normalized load JG is plotted with respect to time for two
different values of (V - OJ. It can be seen from the figure that the commonly observed
sawtooth load trace reflects the competition between the ductile and brittle mechanisms
occurring during constant extension rate testing. As the difference (V - vj ) is decreased the
brittle, sharp crack tip mechanisms are retarded which results in a load trace with more
curvature on the loading stage and lower frequency. This is a direct consequence of the fact
that more time is spent on the loading curve (due, for example, to crack tip blunting) as
shown in Fig. 9, where the normalized crack growth increment Ad is plotted with respect
to time for two values of (V-vJ Also, since most of the crack growth occurs when the
sharp crack is propagating rapidly on the high velocity branch, it can be seen from this
figure that the overall crack growth and rate is decreased as the difference (V-v,) decreases.

4.2. Comparison with experiments
Numerical calculations are compared with the fracture experiments of Yamini and

Young (1977) on epoxy resins. The applied extension rates and the corresponding upper
Kj ("initiation") and lower K a ("arrest") values of the stress intensity factor oscillations are
known. The material properties and specimen dimensions defined in Fig. 2 are W = 30
mm, Wm = 10.4 mm, Z = 0.874, b = 3 mm, be = 2.5 mm, V = 0.33 and E = 3 X 103 MPa
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(typical). The negative-slope region of the fracture toughness-velocity curve is approxi­
mated by replotting the experimental data shown in Fig. 10 as Gj (V) = 1(2/£ where V for
the DT specimen is given by eqn (21) for G = Gj • The actual negative slope region of the
fracture toughness-velocity curve is defined as (G j , vJ and is determined by the equation
for the loading curve Gj = Y(L\) = Yo(l +y,vn where Vj < V. The parameters (Yo, 1'" n) in
the loading curve equation were chosen to match the appropriate load versus time measure­
ments for various applied extension rates. Figure 12 shows two such loading curves for two
different applied extension rates.

Equations (29)-(31) are numerically integrated for given applied extension rates and
the value of the effective mass of the crack tip is chosen to produce the appropriate limit
cycles shown in Fig. 12 for the construction of the theoretical K j (or GJ and Ka (or Ga )

versus applied extension rate curves shown in Fig. 10. It can be seen in Fig. 10 that the
loading curve concept successfully describes the experimentally observed decrease of K j

with increasing applied extension rates and the transition to stable crack growth at applied
extension rates above A= 1.9 x 10- 3 m s -I. In addition, this figure shows the necessity of
including the crack tip inertia term in the equation of motion since a classical stick-slip
fracture limit cycle (m = 0) would predict Ka = K* = J£1'* = 0.62 MPa m l

!2. It can be
seen that the theory compares well with the experiments for m = 0.7 Pa s where Ka is less
than K* and increases with increasing applied extension rates until Ka = K* at the transition
to stable crack growth.

The results in Fig. 10 are not sensitive to the shape of the high velocity branch shown
in Fig. 11. The shape of the high velocity branch, however, does provide an upper limit on
the crack tip velocity which in turn affects the magnitude of the crack growth increments.
Since the complete high velocity branch was not measured in the experiments it was chosen
so that the sizes of the crack growth increments were comparable with those observed
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Fig. 12. Step-like crack growth for two different applied extension rates (a) for A= 4.62 X 10- 5 m
s 1 and (b) for A= 9.48 X 10 4 m S-I.

experimentally. The crack growth with respect to time is plotted in Figs l2(a, b) for two
different applied extension rates. These figures show that the crack growth increments are
larger and the frequency of the oscillations are much lower for lower applied extension
rates. The crack growth increments for the lower applied extension rate are 10-17 mm and
for the higher applied extension rate are 4-10 mm. These estimates correlate well with
experiments (Young and Beaumont, 1976). The shape of the loading curve influences the
crack growth behavior and in the case of high applied extension rates the step-like crack
growth is more rounded. Figures l2(a, b) compare well with the two types of crack growth
identified by Leevers (1986).
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